学了四年,还是不一样的。当年大一时约瑟夫环是个啥都理解了半天,现在可以在十分钟里面自己写个算法了,真是值得纪念。
约瑟夫环:
已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围。从编号为k的人开始报数,数到m的那个人出列;他的下一个人又从1开始报数,数到m的那个人又出列;依此规律重复下去,直到圆桌周围的人全部出列。
例如:n = 9, k = 1, m = 5
【解答】出局人的顺序为5, 1, 7, 4, 3, 6, 9, 2, 8。
int main()//约瑟夫环
{
int n=9, m=5,k=2;//n是人数(编号1,2,……,x),m是出列号,k是起始人编号
int j=0, l=0;
int a[10];
for (int i=1;i<=9;i++)
{
a[i]=1;
}
while (l<n)
{
for (int i=1;i<=n;i++)
{
if (a[i]==1)
{
j++;
if (j==m)
{//满足出列号
a[i]=0;
if (i==n&&k>1)
{
cout<<1<<endl;
}
else
{
cout<<i+(k-1)<<endl;
}
j=0;
l++;
}
}
}
}
}
顺便附上一个数学思想的约瑟夫环解法,要求有点不一样。就是一共n个人,查到m的人出圈,求最后圈里的人是几号。
int fun(int n, int m)
{
int i, r = 0;
for (i = 2; i <= n; i++)
r = (r + m) % i;
return r+1;
}
好巧妙,真简洁,可惜我不理解。